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Abstract 

The article shows possibilities in a diagnostic of composite two-layer beams with 
flexible connectors (like bolts in steel-concrete beams and nails in wooden-concrete ones) 
offered by an analysis of their natural frequencies. Finding the minimum of error function 
(between model and measured natural frequencies of beam) enables an estimation of shear 
compliance for the interlayer joint of beam and, if needed, Young’ modulus for one of layers.  
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1    INTRODUCTION 

Composite structures with compliant shear connections of their sub-elements 
become more and more popular systems in the building industry. The first of all one should 
appreciate for this type of structures a considerable increase of their load capacity and 
stiffness resulting from combining their components. For example in case of composite 
steel-ferroconcrete (or wood-ferroconcrete) beams an upper ferroconcrete slab is mainly 
compressed and the lower bar steel (or wooden) element is subject to tension, what is 
extremely advantageous in view of the properties of used materials. Moreover the problem 
of torsional-flexural buckling of more flexible steel (or wooden) profiles is eliminated thanks 
to connecting them with the rigid upper slab [3]. It should be noticed that these kinds of 
beam structures work correctly if the shear contact between the ferroconcrete slab and steel 
(wooden) bar elements shows enough low compliance. However this property may increase  
during a long-lasting exploitation in effect of corrosion of the stud (bolt) connectors and 
concrete in the joint, evolution of fatigue micro-cracks in the concrete slab etc. Therefore a 
way of estimating the shear compliance for the beam interlayer joints based on an analysis 
of their natural frequencies is proposed in the paper. Such a kind of diagnostic tests can be 
carried out on real structures in a non-invasive way. The considerations are finally illustrated 
by a computational example for a steel-ferroconcrete combined beam. 
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2    MATHEMATICAL DESCRIPTION OF THE PROBELM  

Let us consider a composite beam which consists of two elastic layers of different 
Young’s modulus (E1 and E2) and bisymmetric cross-sections. A contact between these two 
elements is assumed as a flexible one of shear compliance k-1. For example a static scheme 
for such a free-ends beam and its differential element are presented in Fig.1. It is subject to 
an action of distributed, external and time-variable load q.  

 

 
Fig.1: The static scheme of steel-ferroconcrete beam and its differential element                       

with the forces acting over it  

The symbols used in Fig.1, that is: M(i),T(i),N(i),u(i),h(i),O(i),ρ(i),qb,τ,w, have the following 
meanings respectively: bending moment, shearing and axial force, horizontal displacement, 
height, position of cross-sectional mass centre and material density for the beam layer (i) 
(i=1,2), part of vertical load q taken over by the layer (1), shearing load in the contact of 
layers and vertical displacement of the axes of layers. The flexibility of contact enables a slip 
in the plane of connection. As shown in Fig.2  the slip s can be calculated from the equation 
[4]:  

Iewuus −−= )2()1( , (1) 

where: e=½(h(1)+h(2)), (…)I – the first derivative of function over x-axis, wI – angle of 
rotation of centre line of the beam. Thus the shearing load in the elastic contact may be 
described by the formula:  

)( )2()1(
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where: k – stiffness of the connection. 

q 

l 



3 

 
Fig.2: The slip in the contact of beam layers  

Taking into account the physical equation (2) and the equilibrium conditions for the 
beam differential element shown in Fig.1 the following system of differential equations on   
functions of displacements w, u(1) and u(2) may be obtained: 
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where: (…)II, (…)IV – the second and fourth derivatives of a function over x-axis; ( )
..

...  – 

the second time-derivative; I(i)- moments of inertia for the layer (i) (i=1,2) in the cross-section 
of beam layer. In order to solve the system it has to be completed by boundary and initial 
conditions. For example they can be formulated for the free-ends beam shown in Fig.1 as 
follows:  

( ) 00 == t,xw , ( ) 0== t,lxw , ( ) 00 == t,xw II
, ( ) 0== t,lxw II

, ( )( ) 001 == t,xu I
,  

( )( ) 01 == t,lxu I
, ( )( ) 002 == t,xu I

, ( )( ) 02 == t,lxu I
, ( ) w~t,xw == 0 , ( ) v~t,xw == 0& ,  (4) 

( )( ) ( )11 0 u~t,xu == , ( )( ) ( )11 0 v~t,xu ==& , ( )( ) ( )22 0 u~t,xu == , ( )( ) ( )22 0 v~t,xu ==& ,  

where: t – time; w~ , v~ , ( )1u~ , ( )1v~ , ( )2u~ , ( )2v~  – known functions. 

Using Finite Element Method (FEM) or Finite Difference Method (FDM) we can 
express the system (3) generally in the matrix form: 

uBPKu &&−= ,    (5) 

where: K – stiffness matrix, u – vector of node displacements,  P – vector of forces 
(three terms in the equations), B – inertia matrix. In order to carry out the modal analysis of 
the problem we assume in the equation (5) P=0 and ( )φω += tsin0uu  (e.g. [1]). Then we can 

obtain the following equation for eigenvalues λi of matrix  KB-1:   

 ( ) ( ) 0uBIK =+− ϕωω tsin0
2  ( ) 01 =−→ − IKB λdet 2

ii ωλ =→ ,   (6) 

where : I – unit matrix, 0 – zero vector, u0 – vector of free vibration amplitudes,  
ωi  – i-natural frequency of the beam, t – time.    
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Solving the above eigenvalue problem it is possible easily to calculate natural 
frequencies for the combined beam. On the other hand when natural frequencies of  
real combined beam are known from measurements (from the Fourier analysis of 
accelerations of chosen points in the real structure excited to test vibrations) it is possible to 
estimate its stiffness k  finding the minimum of the following “error functions”: 
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where: ωi(measurement)– measured  i-natural frequency for the real structure, ωi(model)– i-
natural frequency calculated basing on the assumed model, n – number of the first natural 
frequencies taken into considerations. The function F depends on model stiffness k (F=F(k)) 
if E(1) and E(2) are known. However it is worth to notice in case of steel-ferroconcrete beams 
that Young’s modulus of concrete is much more random than Young’s modulus of steel 
because of the technology of fabrication. That is why it is sensible to consider in such  
a situation the error function as dependent on two variables, thus F=F(E(concrete),k). To 
illustrate possibilities of employing the above approach in diagnostics of combined beam 
structures the next sections are devoted to a presentation of computational example for a 
steel-ferroconcrete rib of floor in which upper ferroconcrete slab and steel I-profile are 
connected by Nelson bolts. The calculations were made by means of own computer 
program written in the MATLAB environment employing the above mathematical formulas 
and using FDM, what enabled to introduce the inertia matrix as a diagonal one.   

3    DATA FOR THE COMPUTATIONAL EXAMPLE  

Let us consider the example of composite steel-ferroconcrete floor with flexible 
interlayer shear connection created by steel studs (Fig.3) where the rib of floor can be 
treated as a free-ends beam from mechanical point of view to simplify the calculations. It is 
a kind of structure used mostly in the industry and bridge engineering. It enables to obtain 
relatively big span together with an advisable load-capacity and economic use of steel and 
concrete. 

 

Fig.3: Cross-section and static scheme of the rib  
of analysed composite steel-ferroconcrete floor 

The geometrical and material parameters assumed for the example are shown in 
Fig.3. The stiffness of stud connection (k=4,64GN/m) was established basing on the 
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laboratory tests presented in the publication [2]. Finally one obtained for the beam three first 
values of natural frequencies as follows: 

 =1ω 4.74Hz, =2ω 18.64Hz, =3ω 40.82Hz.     (8) 

4    ESTIMATION OF THE BEAM PARAMETERS   

Because of the fact that Young’s modulus of steel is much more predictable as 
mentioned in the section 2 it is purposeful to make the error function (7) dependent on the 
parameters E(2) and k for the example defined in the section 3. It is also worth to mention 
here that steel elements characterise most stable parameters in this kind of structures and 
regardless of types of steel used its modulus of elasticity is almost constant and equal to 
about 205GPa. The connectors are also made from steel but keeping the conditions 
concerning their shaping their load capacity and shear stiffness are determined the first of 
all by properties of concrete [2]. In view of the above considerations to present the possible 
diagnostic application of simple analysis of variation for the error functions (7) the contour 
line diagram of function (71) (for n=3) is presented in the Fig.4 for the example beam. The 
frequencies (8) are assumed here as ωi(measurement). On the other hand the frequencies ωi(model) 

are variable in dependence on E(2)∈[5,50]GPa and k∈[0.5,10]GN/m. To visualise better the 
position of the global minimum the square root of this function is shown. It can be noticed 
that minimum in the diagram is unique in the ranges of E(2) and k which were chosen in 
order to analyse the physically acceptable conditions for the considered example because 
of the material limitations. It is also evident that if we only know enough exactly the 
geometry of structure, modulus of elasticity for one beam layer and as much as possible first 
natural frequencies (usually it is possible to measure from two to four of the first ones) then 
we can estimate sensibly the rest of essential mechanical properties for it.  

 

 

 

 

 

 

 

 

  
 

 

  

 

Fig.4: The contour line diagram of square root of error function (71) in the dependence on 
shear stiffness k and Young’ modulus of concrete plate E(2) for the beam defined in the 

section 3 

The task may be simplified considerably if both of layer moduli of elasticity are 
known. Then the analysis of variation of the error function can be made for the sake of one 
variable that is shear stiffness (compliance) of the interlayer connection. The diagram of 
square root of error function (71) is shown in the Fig.5 in this case for data from the section 
3. One used in the presented example the method of systematic domain searching and the 
time needed for calculations amounted to about 20 minutes on the standard PC computer. 

F
[-] 

E(2) [Pa] x1010 
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Fig.5: The diagram of square root of error function (71) in the dependence on shear stiffness  
k for the beam defined in the section 3 

4    CONCLUSIONS 

The combined structures (especially two-layer beams) are more and more popular 
and readily used because of their optimal use of materials with keeping advisable stiffness 
and load capacity. That is why non-destructive test methods should be intensively 
developed in this range too. The proposed method is based on the analysis of free 
vibrations. If we only can measure first two, three (or more if possible) natural frequencies it 
is possible to estimate other essential mechanical properties of combined beams, that is 
very important shear compliance (or stiffness) of interlayer connection (realised by studs, 
bolts, nails etc.) and more over Young’s modulus for one of the layers. Because of the way 
of fabrication it is purposeful to estimate this way effective Young’s modulus for concrete 
upper slab in steel-ferroconcrete beams what can be also used for an indirect estimation of 
its compression strength (e.g. basing on the formulas from the publication [6]).  Of course a 
choice of way of searching the global minimum of error function and time-consumption of 
calculations rebated to this are other questions of the problem . That is why it is worth to 
choose more time-effective optimisation method than this used in the work (based for 
example on evolutionary algorithms (e.g. [5]) for more complex examples. 
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